MATH 590: QUIZ 9 SOLUTIONS

Name:

- 1. Let V be a finite dimensional vector space with inner product \langle , \rangle and orthonormal basis u_1, \ldots, u_n .
 - (i) $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle.$ (2 points)
 - (ii) For $v \in V$, use the inner product to write v as a linear combination of u_1, \ldots, u_n . (2 points) Solution for (ii). $v = \langle v, u_1 \rangle \cdot u_1 + \cdots + \langle v, u_n \rangle \cdot u_n$.

2. Let V denote the vector space of real polynomials having degree less than or equal to one, with inner product $\langle f(x), g(x) \rangle := \int_{-1}^{1} f(x)g(x) \, dx$. Show that $f_1 := \frac{1}{\sqrt{2}}$ and $f_2 := \sqrt{\frac{3}{2}}x$ is an orthonormal basis for V. (6 points).

Solution. $\int_{-1}^{1} f_1(x) \cdot f_2(x) = \int_{-1}^{1} \frac{1}{\sqrt{2}} \cdot \sqrt{\frac{3}{2}} x \, dx = \frac{\sqrt{3}}{2} (\frac{x^2}{2})_{-1}^1 = 0$, so $f_1(x)$ and $f_2(x)$ are orthogonal. $||f_1|| = \{\langle f_1, f_1 \rangle\}^{1/2} = \{\int_{-1}^{1} \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \, dx\}^{1/2} = \{(\frac{x}{2})_{-1}^1\}^{1/2} = 1$, so that f_1 has length one. $||f_2|| = \{\langle f_2, f_2 \rangle\}^{1/2} = \{\int_{-1}^{1} \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{\sqrt{2}} x \, dx\}^{1/2} = \frac{\sqrt{3}}{2} (\frac{x^2}{2})_{-1}^1 = 0$, so f_1, f_2 are orthogonal. Therefore, f_2 is an orthogonum system. Since such a system is linearly independent, and V has displayed by the set of the system.

Therefore, f_1, f_2 is an orthonormal system. Since such a system is linearly independent, and V has dimension two, it follows that f_1, f_2 is an orthonormal basis for V.